Income distribution modelling is a fundamental tool in economic analysis, providing insight into the structure of inequality and wealth in societies. Over the years, numerous models have been proposed to capture the complex nature of income distribution. The aim of the study presented in the article is to compare selected three-parameter income distribution models, i.e. the Singh-Maddala, the Dagum and the Zenga models, in terms of their goodness of fit to empirical data. The study covers six European countries, namely: France, Germany, Hungary, Czechia, Poland and Slovakia. The analyses, based on data for 2016 from the European Quality of Life Survey, were performed for the whole country and in a breakdown into big towns, small or middle-sized towns and rural areas (in total, 24 microdata sets). To compare the estimated theoretical distributions, two different measures of goodness of fit were used: the distribution similarity coefficient (Wp) and the Mortara index (A1). The study also examined deviations of descriptive statistics based on theoretical distributions (median, mean, the first and the ninth decile) from empirical values.
The Zenga model best fitted the empirical data the greatest number of times, but the descriptive characteristics of income distribution estimated on the basis of the Dagum distribution deviated from empirical values to a much lesser degree. Moreover, the results indicate that even very high goodness of fit to empirical data, measured by the A1 and Wp, does not guarantee that the descriptive characteristics calculated on the basis of theoretical distribution parameters would have the same values as the empirical ones.
Dagum distribution, Singh-Maddala distribution, Zenga distribution, measures of goodness of fit
D31, C13, C15
Ahmed, M. A. (2021). Extending Singh-Maddala Distribution. Journal of Modern Applied Statistical Methods, 19(1), 1–23. https://doi.org/10.22237/jmasm/1608553680.
Al-Sabbah, S. A., Mahood, M. S., & Abood, A. H. (2021). Comparison of methods for estimating the reliability of arriving for the Burr distribution. Journal of Physics: Conference Series, 1897, 1–22. https://doi.org/10.1088/1742-6596/1897/1/012005.
Anand, S., & Segal, P. (2017). Who are the global top 1%?. World Development, 95, 111–126. https://doi.org/10.1016/j.worlddev.2017.02.001.
Bandourian, R., McDonald, J. B., & Turley, R. S. (2003). A Comparison of Parametric Models of Income Distribution Across Countries and Over Time. Estadistica, 55, 135–152.
Bhatti, F. A., & Ahmad, M. (2019). On the modified Singh-Maddala distribution: development, properties, characterizations and application. Journal of Reliability and Statistical Studies, 12(1), 79–103.
Blanchet, T., Garbinti, B., Goupille-Lebret, J., & Martínez-Toledano, C. (2018). Applying Generalized Pareto Curves to Inequality Analysis. AEA Papers and Proceedings, 108, 114–118. https://doi.org/10.1257/pandp.20181075.
Chotikapanich, D., & Griffiths, W. E. (2000). Applications: posterior distributions for the Gini coefficient using grouped data. Australian & New Zealand Journal of Statistics, 42(4), 383–392. https://doi.org/10.1111/1467-842X.00136.
Chotikapanich, D., Griffiths, W. E., Hajargasht, G., Karunarathne, W., & Rao, D. P. (2018). Using the GB2 Income Distribution. Econometrics, 6(2), 1–24. https://doi.org/10.3390/econometrics6020021.
Chotikapanich, D., Prasada Rao, D. S., & Tang, K. K. (2007). Estimating income inequality in China using grouped data and the generalized beta distribution. The Review of Income and Wealth, 53(1), 127–147. https://doi.org/10.1111/j.1475-4991.2007.00220.x.
Contoyannis, P., & Forster, M. (1999). The distribution of health and income: a theoretical framework. Journal of Health Economics, 18(5), 605–622. https://doi.org/10.1016/S0167-6296(99)00002-8.
Eckernkemper, T., & Gribisch, B. (2021). Classical and Bayesian Inference for Income Distributions using Grouped Data. Oxford Bulletin of Economics and Statistics, 83(1), 32–65. https://doi.org/10.1111/obes.12396.
Eckerstorfer, P., Halak, J., Kapeller, J., Schütz, B., Springholz, F., & Wildauer, R. (2016). Correcting for the missing rich: An application to wealth survey data. The Review of Income and Wealth, 62(4), 605–627. https://doi.org/10.1111/roiw.12188.
Eurofound. (2017). European Quality of Life Survey 2016. Quality of life, quality of public services, and quality of society. Publications Office of the European Union. https://doi.org/10.2806/964014.
García Pérez, C., & Prieto Alaiz, M. (2011). Using the Dagum model to explain changes in personal income distribution. Applied Economics, 43(28), 4377–4386. https://doi.org/10.1080/00036846.2010.491459.
Gibrat, R. (1931). Les inégalités économiques.
Graf, M., & Nedyalkova, D. (2014). Modeling of income and indicators of poverty and social exclusion using the generalized beta distribution of the second kind. Review of Income and Wealth, 60(4), 821–842. https://doi.org/10.1111/roiw.12031.
Hajargasht, G., & Griffiths, W. E. (2013). Pareto-lognormal distributions: Inequality, poverty, and estimation from grouped income data. Economic Modelling, 33, 593–604. https://doi.org/10.1016/j.econmod.2013.04.046 .
Hlasny, V. (2021). Parametric representation of the top of income distributions: Options, historical evidence, and model selection. Journal of Economic Surveys, 35(4), 1217–1256. https://doi.org/10.1111/joes.12435.
Hlasny, V., & Verme, P. (2015). Top Incomes and the Measurement of Inequality: a Comparative Analysis of Correction Methods using Egyptian, EU, and US Survey Data. In ECINEQ Conference Paper, 145.
Jamal, F., Reyad, H. M., Ahmed, S. O., & Ali Shah, S. M. A. (2020). Mathematical properties and applications of minimum Gumbel Burr distribution. NED University Journal of Research, 17(2), 1–14. https://doi.org/10.35453/NEDJR-ASCN-2018-0063.
Kakamu, K. (2016). Simulation studies comparing Dagum and Singh–Maddala income distributions. Computational Economics, 48, 593–605. https://doi.org/10.1007/s10614-015-9538-z.
Kleiber, C. (1996). Dagum vs. Singh-Maddala income distributions. Economics Letters, 53(3), 265–268. https://doi.org/10.1016/S0165-1765(96)00937-8.
Kleiber, C., & Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences. John Wiley & Sons.
Kozera, A., Stanisławska, J., & Wysocki, F. (2014). Sytuacja finansowa gospodarstw domowych zamieszkujących obszary wiejskie w Polsce po wstąpieniu Polski do Unii Europejskiej. Roczniki Naukowe Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich, 101(2), 91–101.
Kumar, D. (2017). The Singh-Maddala distribution: properties and estimation. International Journal of System Assurance Engineering and Management, 8, 1297–1311. https://doi.org/10.1007/s13198-017-0600-1.
Malekzadeh, A., & Kharrati-Kopaei, M. (2019). Inferences on the common mean of several heterogeneous log-normal distributions. Journal of Applied Statistics, 46(6), 1066–1083. https://doi.org/10.1080/02664763.2018.1531980.
Moshrefi, A., Aghababa, H., & Shoaei, O. (2018). Statistical estimation of delay in nano-scale CMOS circuits using Burr Distribution. Microelectronics Journal, 79, 30–37. https://doi.org/10.1016/j.mejo.2018.06.013 .
Pareto, V. (1897). Cours d,Économie Politique. F. Rouge.
Pocock, M. L., McDonald, J. B., & Pope, C. L. (2002). Estimating Faculty Salary Distributions: An Application of Order Statistics. Journal of Income Distribution, 11(3–4), 43–51. https://doi.org/10.25071/1874-6322.1251.
Polisicchio, M. (2008). ?e continuous random variable with uniform point inequality measure I(p). Statistica & Applicazioni, 6(2), 137–151. https://statisticaeapplicazioni.vitaepensiero.it/scheda-articolo_digital/marcella-polisicchio/the-continuous-random-variable-with-uniform-point-inequality-measure-999999_2008_0002_0040-151277.html.
Shucksmith, M., Cameron, S., Merridew, T., & Pichler, F. (2009). Urban-rural differences in quality of life across the European Union. Regional Studies, 43(10), 1275–1289. https://doi.org/10.1080/00343400802378750.
Singh, S. K., & Maddala, G. S. (1976). Function for Size Distribution of Income. Econometrica, 44(5), 963–970. https://doi.org/10.1007/978-0-387-72796-7_2.
Souma, W. (2001). Universal structure of the personal income distribution. Fractals, 9(4), 463–470. https://doi.org/10.1142/S0218348X01000816.
Souma, W., & Nirei, M. (2005). Empirical Study and Model of Personal Income. In A. Chatterjee, S. Yarlagadda & B. K. Chakrabarti (Eds.), Econophysics of Wealth Distributions (pp. 34–42). Springer. https://doi.org/10.1007/88-470-0389-X_4.
Thiede, B. C., Butler, J. L., Brown, D. L., & Jensen, L. (2020). Income inequality across the rural-urban continuum in the United States, 1970–2016. Rural Sociology, 85(4), 899–937. https://doi.org/10.1111/ruso.12354.
Trzcińska, K. (2021). Kształtowanie się rozkładu dochodów ludności Polski dla regionów na podstawie wybranych modeli teoretycznych. Acta Universitatis Lodziensis. Folia Oeconomica, (1), 111–126. https://doi.org/10.18778/0208-6018.352.06.
Trzcińska, K. (2022). An Analysis of Household Income in Poland and Slovakia Based on Selected Income Models. Folia Oeconomica Stetinensia, 22(1), 287–301. https://sciendo.com/pl/article/10.2478/foli-2022-0014.
Vielrose, E. (1960). Rozkład dochodów według wielkości. Polskie Wydawnictwo Gospodarcze.
Zenga, M. (2010). Mixture of Polisicchio’s Truncated Pareto Distributions with Beta Weights. Statistica & Applicazioni, 8(1), 3–25. https://www.vitaepensiero.it/scheda-articolo_digital/michele-zenga/mixture-of-polisicchios-truncated-pareto-distributions-with-beta-weights-999999_2010 _0001_0002-151302.html.
Zenga, M. M., Pasquazzi, L., & Zenga, M. (2012). First Applications of a New ?ree Parameter Distribution for Non-Negative Variables. Statistica & Applicazioni, 10(2), 131–147. https://statisticaeapplicazioni.vitaepensiero.it/scheda-articolo_digital/leo-pasquazzi-mariangela-zenga-michele-zenga/first-applications-of-a-new-three-parameter-distribution-for-non-negative-variables-999999_2012_0002_0037-151352.html.
Zhong, S., Wang, M., Zhu, Y., Chen, Z., & Huang, X. (2022). Urban expansion and the urban–rural income gap: Empirical evidence from China. Cities, 129, 1–15. https://doi.org/10.1016/j.cities.2022.103831.